

A.V.C. COLLEGE OF ENGINEERING

Approved by AICTE, Affiliated to Anna University

Re-Accredited by NAAC with 'B++' Grade(2nd Cycle)
An ISO 9001:2015 Certified Institution

Mannampandal, Mayiladuthurai – 609 305 04364 – 227202,224202 mail.id: <u>avcce@avccengg.net</u>, http://www.avccengg.net/

Volume: 09 25 years of excellence in education Issue: 18

DEPARTMENT OF CIVIL ENGINEERING

<u>Patron</u> Dr.C.Sundar Raj

Convener

Dr.R.Jayasankar HoD/Civil

Principal

Editorial committee

- Mr.J.Arun A.P
- Mr.S.Rameshwaran A.P.
- Mr.S.Kannan A.P.
- Mr.S.Harikrishnan A.P
- 🌉 Mr.S.Ambethkar A.P

Student Members

- S.Vishva II year
- 🚨 A.Sneha II year
- 🏿 B.Bharathbharathi III year
- P.Praneetha III year
- S.Suriyakala IV year
- K.Ramkumar IV year

CEAT

Civil Engineering Advanced Technologies

HoD's message

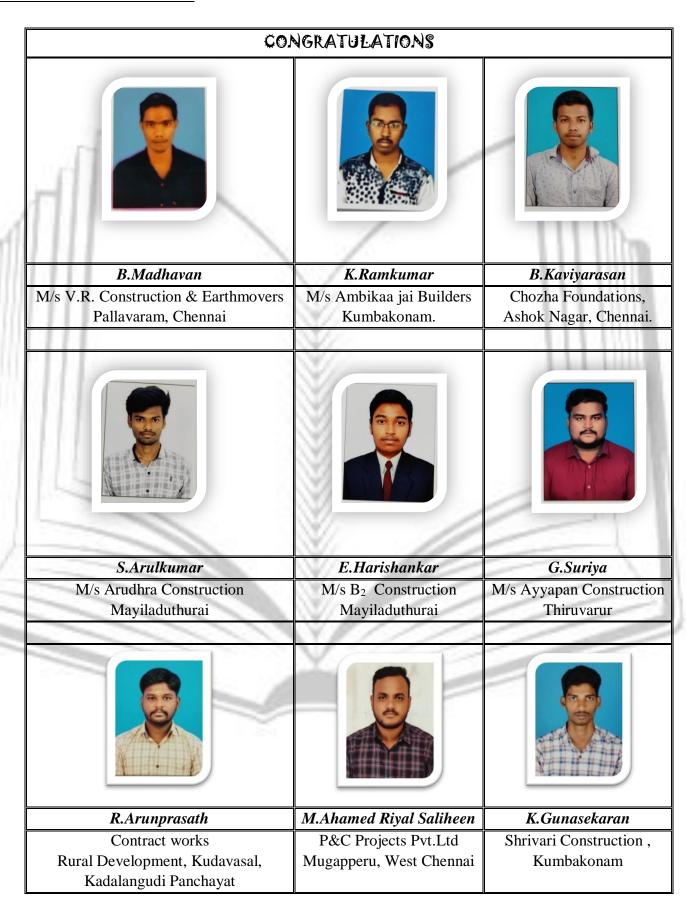
I am delighted to present the welcome message for our biannual newsletter "CEAT" which gives glimpses of the cumulative efforts of the Department of Civil Engineering guided by the Honorable Management and supported by the administration. I congratulate the entire civil engineering department faculties, staff and students for their contribution to department activities and look forward for future developments. Heartiest congratulations to the Editorial Board for development of this newsletter.

Dr. R. JAYASANKAR HOD-CIVIL

Vision

To produce knowledgeable and professionally qualified Civil Engineers with the capability to offer global solutions to the increasing problems in the construction industry.

Mission


- ➤To impart knowledge and training in Civil Engineering.
- ➤To establish state-of-the-art infrastructure to enable learners to update their knowledge in current developments in Civil Engineering
- \succ To Bridge the gap between academy and industry through practical exposure and hands-on training.

ABOUT THE DEPARTMENT

Civil Engineering is the art of directing the great sources of power in nature for the use and convenience of mankind. It is the mother branch of engineering that deals with the design, construction and maintenance of the physical and naturally built environment. The Department of Civil Engineering was started in the year 2011. The department boasts excellent infrastructure facilities and faculties rich in knowledge and experience.

The Department has fully equipped Labs with state-of-the-art equipment including Strength of Materials Lab, Soil Mechanics Lab, Environmental Engineering Lab, Concrete Lab, Highway Engineering Lab, Hydraulics Lab, Fluid Machinery Lab, Surveying Lab, and Computational Lab,. For better awareness and interest of a student, continuous interaction with reputed companies is being organized at frequent intervals in the form of special technical lecture/ workshop/ site visit or exchange of technical knowledge and on campus interview etc.

PLACEMENT DETAILS

FACULTY PARTICIPATION DETAILS

S.No	Name of the faculty	Organised by	Name of Course
1	Mrs.S.Alarmelumangai	NPTEL	Geotechnical Engineering
			Laboratory

FACULTY PUBLICATION DETAILS

S.No	Name of the faculty	No of Publication	Title of the journal
1	R.Jayasankar	01	Prediction of long term pattern
407	111.111		and its extreme event
- 61	//1.011		frequency of rainfall in
101			Cauvery Delta Basin
10017			(IJCRT, e-ISSN: 2320-2882
			Volume 09, Issue 04: April
401	11111		2021)
2	4.4.1.10	3/8/	Experimental Investigation on
			Replacement of coarse
	S.Harikrishnan	01	aggregate by coconut shell
			and bamboo in concrete
	1111		(IRJET, e-ISSN: 2395-0056
			p-ISSN: 2395-0072, Volume 08,
			Issue 03: March 2021)

STUDENTS PUBLICATION DETAILS

S.No	Name of the Student	No of Publication	Title of the journal
1	R.V.Gopika Sri	01	Prediction of long term pattern
	C.Surya		and its extreme event
	N.Umashankar		frequency of rainfall in
	R.Parthiban		Cauvery Delta Basin
			(IJCRT, e-ISSN: 2320-2882
			Volume 09, Issue 04: April
			2021)
	K.Ramkumar	01	Experimental Investigation on
2	S.Anusha		Replacement of coarse
	B.Venkatesh		aggregate by coconut shell
	R.Arun Prasath		and bamboo in concrete

	(IRJET, e-ISSN: 2395-0056
	p-ISSN: 2395-0072, Volume 08,
	Issue 03: March 2021)

INFORMATION PAGE:

Mr.S.Kannan, Assistant Professor/ Civil

INTRODUCTION OF INTERLOCKING BRICKS

Interlocking bricks are different from conventional bricks that do not require mortar for the construction of walls. These are designed in such a way that each brick can lock itself with others due to the key and lock mechanism. In this **civil engineering** article you will know about the pros and cons of interlocking bricks.

There are different types of interlocking bricks like interlocking paving bricks, interlock wall bricks, interlocking landscape bricks, interlocking retaining wall bricks etc.

ADVANTAGES OF INTERLOCKING BRICKS

Earthquake Resistant

One of the significant benefits of interlocking bricks is they act as good earthquake resistance. There are various stresses on the structure due to earthquakes. Conventional bricks couldn't bear the **stress** as they cannot transfer the seismic load across the structure equivalently.

Only mortar can transfer the seismic loads, and if it fails, the whole structure will fail. At the same time, interlocking bricks are equipped to transfer the seismic forces equivalently across the whole structure because of the self-locking pattern.

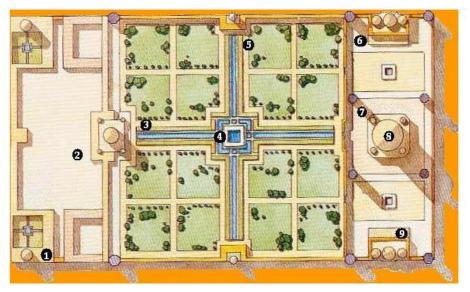
STUDENT CORNER:

Ms.A.Sneha II Year Civil AVCCE

Mr.R.Parthiban IV Year Civil AVCCE

ALUMNI PAGES:

Our Alumni Received the Star Achiever Award by the National Integral Cultural Academy for his contribution and achievements in the Field of Construction on 23.01.2021.


Thanks to AVCCE, the faculty of Civil Engineering has always been supportive and inspiring guides, and also challenging taskmasters.

Mr.M.Selvam Quality Engineer, Angel construction, Pagalkot, Karnataka.

TECHNICAL DATA TAJ MAHAL, AGRA

Name: Taj Mahal, Agra

Taj Mahal was constructed over a period of twenty-two years, employing twenty thousand workers. It was completed in 1648 C.E. at a cost of **32 Million Rupees**. The construction documents show that its master architect was **Ustad 'Isa**, the renowned Islamic architect of his time. The documents contain names of those employed and the inventory of construction materials and their origin. Expert craftsmen from Delhi, Qannauj, Lahore, and Multan were employed. In addition, many renowned Muslim craftsmen from Baghdad, Shiraz and Bukhara worked on many specialized tasks.

The mausoleum is a part of a vast complex comprising of a main gateway, an elaborate garden, a mosque (to the left), a guest house (to the right), and several other palatial buildings. The Taj is at the farthest end of this complex, with the river **Jumna** behind it. The large garden contains four reflecting pools dividing it at the center. Each of these four sections is further subdivided into four sections and then each into yet another four sections. Like the Taj, the garden elements serve like **Arabesque**, standing on their own and also constituting the whole. The **minarets** have an octagonal base and cylindrical body tapering to an eight-sided open pavilion. The body of the minarets is sectioned by three balconies which create shadows and interest in an otherwise plain design. An exquisite band of marble inlay and geometric patterns sporting the chevron design encircle the minaret below the top balcony. The summit of the **gold gilded finial** perched on the top of the dome of the **Taj Mahal reaches two hundred and twenty feet [67 meters]** above the ground. At the top sits a lotus bud and under this is a water pot. This arrangement was adapted to the Islamic domain from the 12th century. Its function is purely decorative, accompanying the form of the dome.

Any suggestions:

avccecivilnews@avccengg.net